If it's not what You are looking for type in the equation solver your own equation and let us solve it.
48(t)=-16t^2
We move all terms to the left:
48(t)-(-16t^2)=0
We get rid of parentheses
16t^2+48t=0
a = 16; b = 48; c = 0;
Δ = b2-4ac
Δ = 482-4·16·0
Δ = 2304
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2304}=48$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(48)-48}{2*16}=\frac{-96}{32} =-3 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(48)+48}{2*16}=\frac{0}{32} =0 $
| 16d+4d=20 | | 12x+42=8x-42 | | 5.2c-7=19 | | 20x=5x-20 | | -w+221=151 | | 3-4/z=5 | | 4v+5=-25 | | 49(t)=-16t^2 | | –8−2r=–r | | t=27-(27-t) | | 6x+10+x=59 | | Y-1=⅔(x+3) | | 16t-13t=9 | | 4(2x+6)=-28+36 | | 8(w-5)=8* | | 49+x+45=180 | | 266=-u+182 | | 3x+(1/2)=(1/4)x+6 | | F(4)=21x+11 | | 4s=3s+6 | | 5x+2.50=5.00 | | 3x+7+68=180 | | 4s+50=430 | | 3z+1/4=4z+5/4 | | -0.68x+0.38x=8.1 | | 7x-8=6x+1* | | 2g=4g+10 | | 104-w=184 | | 90-4x+x=180 | | -u+6=30 | | 4400=44(p+40) | | 3(3x−3)=3(3x−3)= 27 |